ULRICH FLÖRKE AND HANS-JÜRGEN HAUPT

01	-0.3633 (6)	0.7271 (5)	0.4145 (3)	0.083 (2)
C2	-0.2636 (7)	0.6859 (6)	0.2110 (4)	0.058 (2)
02	-0.3155 (6)	0.6300 (5)	0.1923 (4)	0.089 (2)
C3	-0.3358 (8)	0.9024 (7)	0.2093 (5)	0.071 (2)
03	-0.4252 (7)	0.9783 (6)	0.1871 (5)	0.123 (3)
C4	-0.1321(7)	0.8777 (5)	0.2885 (4)	0.057 (2)
04	-0.1015 (6)	0.9380 (5)	0.3167 (4)	0.095 (2)
C5	0.1706 (8)	0.8153 (6)	0.1648 (4)	0.060 (2)
05	0.2283 (7)	0.8654 (5)	0.1866 (4)	0.093 (2)
C6	0.0181 (8)	0.6383 (6)	0.0845 (4)	0.058 (2)
06	-0.0160 (7)	0.5803 (5)	0.0567 (3)	0.086 (2)
C7	0.2695 (8)	0.6299 (6)	0.1062 (4)	0.061 (2)
07	0.3821 (6)	0.5626 (5)	0.0958 (4)	0.093 (2)
C8	0.0954 (9)	0.8259 (6)	0.0254 (4)	0.067 (2)
08	0.1018 (8)	0.8853 (5)	-0.0368 (3)	0.099 (2)
C11	0.1293 (5)	0.6532 (5)	0.3374 (3)	0.037 (1)
C12	0.2937 (6)	0.5858 (6)	0.3202 (4)	0.056 (2)
C13	0.3755 (7)	0.5981 (7)	0.3827 (5)	0.073 (2)
C14	0.3026 (8)	0.5636 (8)	0.4722 (5)	0.081 (2)
C15	0.1405 (7)	0.6294 (7)	0.4894 (4)	0.067 (2)
C16	0.0579 (7)	0.6181 (6)	0.4263 (4)	0.054 (2)
C21	0.1973 (7)	0.2465 (6)	0.1476 (5)	0.066 (2)
C22	0.3333 (10)	0.2796 (9)	0.1266 (6)	0.100 (3)
C23	0.4120 (10)	0.2754 (8)	0.0358 (5)	0.094 (3)
C24	0.4285 (12)	0.1709 (10)	0.0056 (6)	0.117 (4)
C25	0.2967 (10)	0.1373 (9)	0.0266 (6)	0.107 (3)
C26	0.2108 (7)	0.1386 (5)	0.1173 (4)	0.056 (2)
C311	0.1376 (13)	0.1679 (9)	0.3477 (8)	0.042 (3)
C32	0.1666 (9)	0.0455 (5)	0.3384 (5)	0.072 (2)
C331	0.2074 (19)	-0.0294 (15)	0.4229 (11)	0.081 (5)
C341	0.3417 (18)	-0.0081 (13)	0.4434 (11)	0.076 (4)
C35	0.3055 (10)	0.1087 (8)	0.4493 (5)	0.093 (3)
C361	0.2689 (13)	0.1911 (10)	0.3690 (7)	0.044 (3)
C312	0.1940 (14)	0.1566 (10)	0.3165 (8)	0.043 (3)
C332	0.2655 (17)	-0.0451 (12)	0.3904 (9)	0.066 (4)
C342	0.2713 (22)	-0.0060 (14)	0.4672 (10)	0.079 (5)
C362	0.2062 (16)	0.1938 (11)	0.3941 (8)	0.057 (3)
C41	-0.0968 (6)	0.2460 (5)	0.2518 (4)	0.0431 (13)
C42	-0.2083 (7)	0.2709 (7)	0.3327 (4)	0.069 (2)
C43	-0.3615 (8)	0.2585 (9)	0.3308 (6)	0.100 (3)
C44	-0.4228 (8)	0.3331 (8)	0.2584 (6)	0.090 (3)
C45	-0.3155 (7)	0.3080 (8)	0.1777 (6)	0.086 (3)
C46	-0.1633 (6)	0.3202 (6)	0.1768 (4)	0.059 (2)
H1	-0.099 (7)	0.829 (6)	0.152 (4)	0.080

Table 2. Selected geometric parameters (Å, °)

2.3197 (14)	Mn1—H1	1.69 (8)
2.3217 (14)	Mn2—P1	2.334 (2)
2.334 (2)	Mn2H1	1.86 (10)
2.9332 (13)		
171.12 (5)	C11—P1—Mn1	115.3 (2)
51.08 (4)	Au-P1-Mn1	123.23 (6)
51.06 (4)	C11—P1—Mn2	115.0 (2)
111 (4)	Au—P1—Mn2	112.89 (6
109.3 (2)	Mn1-P1-Mn2	77.86 (5
	2.3197 (14) 2.3217 (14) 2.334 (2) 2.9332 (13) 171.12 (5) 51.08 (4) 51.06 (4) 111 (4) 109.3 (2)	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Program(s) used to solve structure: *SHELXS86* (Sheldrick, 1990). Program(s) used to refine structure: *SHELXL93* (Sheldrick, 1993).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: JZ1018). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Doedens, R. J., Robinson, W. T. & Ibers, J. A. (1967). J. Am. Chem. Soc. 89, 4323–4329.
- Flörke, U. & Haupt, H.-J. (1994). Z. Kristallogr. In the press.
- Haupt, H.-J., Heinekamp, C., Flörke, U. & Jüptner, U. (1992). Z. Anorg. Allg. Chem. 608, 100-114.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved Sheldrick, G. M. (1990). SHELXS86. Program for Crystal Structure Solution. Univ. of Göttingen, Germany.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.

Acta Cryst. (1995). C51, 575-578

Bis(triethylammonium) Bis(2-mercaptobenzoato-*O*,*S*)dioxomolybdate(VI)

J. LI-KAO

Area de Química, Universidad de Atacama, Atacama, Chile

O. GONZÁLEZ

Laboratorio de Cristalografía, Facultad de Química, Universidad de la República, Montevideo, Uruguay

R. F. BAGGIO

División Física del Sólido, Departamento de Física, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina

M. T. GARLAND

Facultad de Ciencias Físicas y Matemáticas, Departamento de Física, Universidad de Chile, Santiago de Chile, Chile

D. CARRILLO

Instituto de Química, Universidad Católica de Valparaíso, Valparaíso, Chile

(Received 4 January 1994; accepted 5 October 1994)

Abstract

Dioxobis(2,4-pentanedionato)molybdenum reacts with mercaptobenzoic acid neutralized with triethylamine in methanol to yield the ionic compound bis(triethylammonium) (OC-6-12)-bis[2-mercaptobenzoato(2-)]-dioxomolybdate(VI), ($C_6H_{16}N_2$ [$MoO_2(C_7H_4O_2S)_2$]. This compound has been characterized by conventional spectroscopic methods and the results of the X-ray crystal structure analysis show the presence of a dianionic [$MoO_2(SC_6H_4CO_2)_2$]²⁻ complex and two Et₃NH⁺ cations.

Comment

The synthesis of the title compound, (I), was undertaken as part of our current research (Carrillo, Gouzerh & Jeannin, 1985; Bustos *et al.* 1991; Carrillo, Robert & Gouzerh, 1992; Debenjak, Bustos, Carrillo, Robert & Gouzerh, 1992*a,b*; Li-Kao, Bustos, Carrillo, Robert & Gouzerh, 1993). The purpose was to obtain a new precursor for the preparation of molybdenum complexes containing organo-dinitrogen ligands, for use as models of the postulated intermediates in the convertion of coordinated dinitrogen into ammonia (Henderson, Leigh & Picket, 1983; Leigh, 1992).

The complex is dianionic in nature (Fig. 1) and shows monomeric units composed of two mercaptobenzoate ligands coordinated to a *cis*-MoO₂ core through atoms S1, S2, O3 and O5. The coordination sphere around the Mo^{V1} ion is best described as a slightly distorted octahedron, where the basal plane is defined by Mo—O1 [1.700 (4) Å], Mo—O2 [1.699 (4) Å], Mo— O3 [2.140 (4) Å] and Mo—O5 [2.152 (4) Å]; r.m.s. deviations from the least-squares plane average 0.17 Å. The apical sites are occupied by atoms S1 and S2 of the organic anion, 5° away from the vertical due to the strain imposed by the close chelate structure. The anion presents a non-crystallographic twofold axis which bisects the O1—Mo—O2 and O3—Mo— O5 angles. These structural characteristics are similar

Fig. 1. View of the title molecule showing the atom-labelling scheme. Displacement ellipsoids are shown at the 40% probability level. H atoms are omitted for clarity, except for those involved in strong hydrogen bonds.

to those found in closely related compounds, mainly in $(NH_4)_2[MoO_2\{O_2CC(S)Ph_2\}_2].2H_2O$ (Palanca *et al.*, 1990). The structure is completed by two Et₃NH⁺ cations, the geometry of which posed some problems in the early stages of refinement. A soft similarity restraint applied to the C—C and C—N bond lengths was enough to stabilize the convergence. The resulting geometry was fairly regular, showing a strong coupling to the anion through two rather short hydrogen-bonded contacts (Fig. 1) (O4…H1A—N1, estimated length/angle 1.80 Å/171°), leading to somewhat independent neutral units connected to one another only through coulombian interactions (Fig. 2).

Fig. 2. Packing diagram showing the molecular arrangement and hydrogen-bond interactions within a unit cell.

Experimental

The title compound was prepared by reaction of 10 mmol of [MoO₂(acac)₂], where acac is acetylacetonato, in 25 ml of methanol with 20 mmol of triethylammonium mercaptobenzoate, [NHEt₃]₂[SC₆H₄CO₂], obtained by neutralization of 20 mmol of mercaptobenzoic acid with 40 mmol of triethylamine in 25 ml of methanol. The reaction mixture was stirred for 1 h at room temperature. The crystalline solid that precipitated was filtered off, then washed with cold methanol and diethyl ether. Well formed orange crystals suitable for X-ray diffraction were obtained from a dichloromethane–hexane solution, the characterization of which gave: m.p. 421 K; 86.3% yield; calculated for C₂₆H₄₀MoN₂O₆S₂: C 49.05, H 6.44%; found: C 49.01, H 6.57%; IR (KBr): 1590 (*s*), 1570 (*s*), 1535 (*s*), 920 (*s*), 880 (*s*), 760 cm⁻¹ (*s*); ¹H NMR (DMSO) δ : 1.19 (*t*), 3.10 (*q*), 7.09 (*m*), 8.00 p.m. (*m*).

Crystal data

$$(C_6H_{16}N)_2[MoO_2(C_7H_4O_2S)_2]$$
 Mo K α radiation
 $M_r = 636.66$ $\lambda = 0.71073$ Å

LI-KAO, GONZÁLEZ, BAGGIO, GARLAND AND CARRILLO

Orthorhombic $P_{2_1}^{2_1}_{2_1}$	Cell parameters from 25 reflections	C18 C19	0.5264 (7) 0.4286 (6)	0.6474 (0.8127 ($\begin{array}{l} 7) & -0.0065 \ (5) \\ 4) & -0.0886 \ (5) \end{array}$	0.111 (4) 0.095 (3)
a = 11.832(3) Å	$A = 7.5, 12.5^{\circ}$	C20	0.3646 (4)	0.9049 (4) -0.0851 (4)	0.114 (3)
a = 11.052(3) A	$v = 0.616 \text{ mm}^{-1}$	C21	0.6640 (4)	0.6698 (4) 0.3372 (4)	0.068 (2)
D = 14.030(3) A	$\mu = 0.010 \text{ mm}$	C22	0.7666 (6)	0.6071 (7) 0.3289 (6)	0.118 (4)
c = 18.049(3) A	I = 293 (2) K	C23	0.4658 (5)	0.6980 ($\begin{array}{ccc} 4) & 0.3043(4) \\ 5) & 0.2424(4) \end{array}$	0.063(2)
$V = 3000.5 (11) \text{ A}^3$	Prismatic	C24 C25	0.4630(7)	0.7693 ((4) 0.2434(4) 0.3525(3)	0.077(2)
Z = 4	$0.46 \times 0.28 \times 0.20$ mm	C26	0.3214(8) 0.4948(11)	0.5587 (7) 0.3329(4)	0.034(2) 0.124(4)
$D_x = 1.409 \text{ Mg m}^{-3}$	Orange				.,	
Data collection		Tal	ble 2. Sele	cted geom	etric parameters	s (Å. °)
Siemens R3m difractometer	2273 observed reflections	M-1 02		1 600 (4)	C2 C7	1 205 (8)
diffractometer	$[I > 2\sigma(I)]$	Mol 02		1.099 (4)	$(2-0)^{-1}$	1.395 (8)
A/2A scans (4 19–29 3°	$\theta_{max} = 24.04^{\circ}$	Mol-03		2 140 (4)	C2C3	1.403 (9)
\min^{-1}	$b = 0 \longrightarrow 13$	Mol-O5		2.152 (4)	C4—C5	1.374 (11)
Abcomption compation.	$h = 0 \rightarrow 15$ $k = 0 \rightarrow 16$	Mol—SI		2.449 (2)	C5-C6	1.373 (10)
Absorption correction.	$k = 0 \rightarrow 10$	Mol—S2		2.467 (2)	C6—C7	1.396 (9)
semi-empirical	$l = 0 \rightarrow 20$	S1—C7		1.771 (6)	C8—C9	1.492 (8)
$I_{\rm min} = 0.72, \ I_{\rm max} = 0.94$	2 standard reflections	S2-C14		1.761 (6)	C9-C14	1.390 (8)
2680 measured reflections	monitored every 98	N1-C19		1.473 (8)	C9-C10	1.396 (8)
2680 independent reflections	reflections	NI-C17		1.4/8 (9)		1.370 (9)
-	intensity decay: none	N2-C21		1.479 (9)	C12 - C12	1 394 (9)
	5 5	N2		1.481 (7)	C13-C14	1.403 (8)
Refinement		N2-C25		1.485 (8)	C15-C16	1.505 (10)
nejinemeni 2		O3C1		1.250 (7)	C17C18	1.514 (10)
Refinement on F^2	$(\Delta/\sigma)_{\rm max} = 0.035$	04—C1		1.254 (7)	C19—C20	1.502 (10)
R(F) = 0.0330	$\Delta \rho_{\rm max} = 0.325 \ {\rm e} \ {\rm \AA}^{-3}$	O5C8		1.270 (7)	C21-C22	1.506 (10)
$wR(F^2) = 0.0879$	$\Delta \rho_{\rm min} = -0.356 \ {\rm e} \ {\rm \AA}^{-3}$	06		1.251 (7)	C23—C24	1.505 (10)
S = 1.044	Atomic scattering factors	C1 - C2		1.499 (8)	C25-C26	1.507 (10)
2680 reflections	from International Tables	O2-Mo1-	-01	103.9 (3)	C7C2C1	125.1 (5)
335 parameters	for Crystallography (1002	O2Mo1	03	161.5 (2)	C3-C2-C1	116.3 (6)
JJ parameters	V-1 C Tables 4.269 and	O1-Mo1-	-03	90.2 (2)	C4-C3-C2	121.2 (7)
H atoms renned as a riding	vol. C, Tables 4.2.0.8 and	02Mol-	-05	91.1 (2)	CSC4C3	119.6 (7)
model	6.1.1.4)	OI-MoI-	-05	101.0(2)	C_{0} C_{0} C_{0} C_{1} C_{2}	119.8 (7)
$w = 1/[\sigma^2(F_o)] + (0.0505P)^2$		03-Mol-	-51	834(2)	$C_{2} = C_{2} = C_{1}$	1190(6)
+ 1.2564 <i>P</i>]		01-Mo1-	-\$1	102.3 (2)	$C_2 - C_7 - S_1$	127.5 (5)
where $P = (F_o^2 + 2F_c^2)/3$		O3-Mo1-	-S1	82.02 (11)	C6-C7-S1	113.5 (5)
		O5-Mo1-	-S1	89.77 (11)	O6—C8—O5	121.6 (5)
Table 1 Exactional tari		O2-Mo1-		102.1 (2)	O6—C8—C9	117.7 (5)
Table 1. Fractional atomic coordinates and equivalent			-S2	84.9 (2)	O5—C8—C9	120.5 (5)
isotropic displacen	ient parameters (Å ²)	03-Mol-	-82	90.80 (11)	C14-C9-C10	118.8 (5)
• •	· · · · · · · · · · · · · · · · · · ·	U3-M01-	-32	ð I. 33 (II)	L14-L9-L8	124.2 (5)

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

x	у	Z	U_{eq}
0.24870 (5)	0.47995 (3)	0.14600 (3)	0.0451 (2)
0.18931 (15)	0.56099 (12)	0.25962 (9)	0.0570 (4)
0.33665 (14)	0.41886 (12)	0.03158 (9)	0.0547 (4)
0.3612 (4)	0.7306 (4)	-0.0637 (3)	0.0602 (14)
0.5575 (4)	0.6267 (3)	0.3109 (3)	0.0530(13)
0.1253 (4)	0.4709 (4)	0.0982 (3)	0.0681 (13)
0.2492 (5)	0.3821 (3)	0.2013 (2)	0.0659 (11)
0.2688 (4)	0.6233 (3)	0.1082 (2)	0.0608 (12)
0.2966 (4)	0.7722 (3)	0.0794 (2)	0.0654 (13)
0.4225 (3)	0.5093 (3)	0.1729 (2)	0.0561 (11)
0.6024 (4)	0.5483 (3)	0.1780 (2)	0.0652 (13)
0.2574 (6)	0.7099 (4)	0.1220 (3)	0.0471 (13)
0.1917 (5)	0.7417 (4)	0.1886 (3)	0.0454 (14)
0.1619 (6)	0.8383 (4)	0.1909 (4)	0.059 (2)
0.0925 (7)	0.8739 (6)	0.2467 (5)	0.076 (2)
0.0524 (7)	0.8136 (6)	0.3005 (5)	0.076 (2)
0.0840 (6)	0.7196 (5)	0.3002 (4)	0.062 (2)
0.1541 (5)	0.6821 (4)	0.2453 (3)	0.0477 (14)
0.5239 (5)	0.4998 (4)	0.1511 (3)	0.0469 (15)
0.5542 (5)	0.4249 (4)	0.0959 (3)	0.0412 (13)
0.6654 (5)	0.3918 (5)	0.0967 (3)	0.052 (2)
0.7024 (6)	0.3227 (5)	0.0484 (4)	0.066 (2)
0.6274 (6)	0.2834 (5)	-0.0007 (4)	0.061 (2)
0.5159 (6)	0.3150 (5)	-0.0036 (3)	0.056 (2)
0.4787 (5)	0.3858 (4)	0.0454 (3)	0.0416 (13)
0.2616 (6)	0.7148 (6)	-0.1116 (4)	0.098 (3)
0.1850 (8)	0.6356 (6)	-0.0865 (5)	0.102 (3)
0.4311 (7)	0.6434 (5)	-0.0623 (5)	0.107 (3)
	x 0.24870 (5) 0.18931 (15) 0.33665 (14) 0.3612 (4) 0.5575 (4) 0.1253 (4) 0.2966 (4) 0.2966 (4) 0.2966 (4) 0.2966 (4) 0.22574 (6) 0.1917 (5) 0.1619 (6) 0.0925 (7) 0.0524 (7) 0.0524 (7) 0.0524 (7) 0.0524 (5) 0.5542 (5) 0.6654 (5) 0.7024 (6) 0.6274 (6) 0.6159 (6) 0.4787 (5) 0.2616 (6) 0.1850 (8) 0.4311 (7)	x y 0.24870 (5) 0.47995 (3) 0.18931 (15) 0.56099 (12) 0.33665 (14) 0.41886 (12) 0.3612 (24) 0.7306 (4) 0.5575 (4) 0.6267 (3) 0.1253 (4) 0.4709 (4) 0.2492 (5) 0.3821 (3) 0.2688 (4) 0.6233 (3) 0.2688 (4) 0.6233 (3) 0.2966 (4) 0.7722 (3) 0.4225 (3) 0.5093 (3) 0.6024 (4) 0.5483 (3) 0.2574 (6) 0.7099 (4) 0.1917 (5) 0.7417 (4) 0.1619 (6) 0.8383 (4) 0.0925 (7) 0.8739 (6) 0.0524 (7) 0.8136 (6) 0.0840 (6) 0.7196 (5) 0.1541 (5) 0.6821 (4) 0.5542 (5) 0.4249 (4) 0.6554 (5) 0.3277 (5) 0.6274 (6) 0.2834 (5) 0.7024 (6) 0.3227 (5) 0.6274 (6) 0.3150 (5) 0.4787 (5) 0.3858 (4) 0.2616 (6) 0.7148 (6) 0.1850 (8) 0.6356 (6) 0.4311 (7) 0.6434 (5)	X y z 0.24870 (5) 0.47995 (3) 0.14600 (3) 0.18931 (15) 0.56099 (12) 0.25962 (9) 0.33665 (14) 0.41886 (12) 0.03158 (9) 0.3612 (24) 0.7306 (4) -0.0637 (3) 0.5575 (4) 0.6267 (3) 0.3109 (3) 0.1253 (4) 0.4709 (4) 0.0982 (3) 0.2492 (5) 0.3821 (3) 0.2013 (2) 0.2688 (4) 0.6233 (3) 0.1082 (2) 0.2688 (4) 0.6233 (3) 0.1729 (2) 0.6264 (4) 0.7722 (3) 0.0794 (2) 0.4225 (3) 0.5093 (3) 0.1729 (2) 0.6024 (4) 0.5483 (3) 0.1780 (2) 0.2574 (6) 0.7099 (4) 0.1220 (3) 0.1917 (5) 0.7417 (4) 0.1886 (3) 0.1191 (6) 0.8383 (4) 0.1909 (4) 0.0925 (7) 0.8739 (6) 0.2467 (5) 0.0524 (7) 0.8136 (6) 0.3005 (5) 0.0840 (6) 0.7196 (5) 0.3002 (4) 0.1541 (5) 0.6821 (4) 0.2453 (3) 0.5239 (5) 0.4298 (4) 0.1511 (3) 0.5542 (5) 0.4249 (4) 0.0959 (3) 0.6654 (5) 0.3918 (5) -0.0007 (4) 0.677 (6) 0.3150 (5) -0.0036 (3) 0.4787 (5) 0.3858 (4) 0.0454 (3) 0.616 (6) 0.7148 (6) -0.1116 (4) 0.1850 (8) 0.6356 (6) -0.0865 (5) 0.4311 (7) 0.6434 (5) -0.0623 (5)

O1-Mo1-S1	102.3 (2)	C2C7S1	127.5 (5)
O3-Mo1-S1	82.02 (11)	C6-C7-S1	113.5 (5)
O5-Mo1-S1	89.77 (11)	O6—C8—O5	121.6 (5)
O2Mo1S2	102.1 (2)	O6—C8—C9	117.7 (5)
O1-Mo1-S2	84.9 (2)	O5—C8—C9	120.5 (5)
O3-Mo1-S2	90.80 (11)	C14-C9-C10	118.8 (5)
O5-Mo1-S2	81.53 (11)	C14-C9-C8	124.2 (5)
S1—Mo1—S2	169.76 (6)	C10-C9-C8	117.0 (5)
C7-S1-Mol	113.1 (2)	C11—C10—C9	121.9 (6)
C14—S2—Mo1	112.1 (2)	C12-C11-C10	119.2 (6)
C19-N1-C17	110.6 (5)	C11—C12—C13	120.6 (6)
C19-N1-C15	111.7 (5)	C12-C13-C14	119.9 (6)
C17—N1—C15	109.4 (6)	C9-C14-C13	119.5 (6)
C21N2C23	112.0 (4)	C9-C14-S2	127.0 (4)
C21—N2—C25	114.6 (5)	C13-C14-S2	113.4 (5)
C23—N2—C25	112.4 (5)	N1-C15-C16	114.5 (6)
C1-O3-Mo1	147.3 (4)	N1-C17-C18	113.4 (7)
C8-05-Mo1	144.3 (4)	N1C19C20	113.0 (5)
O3-C1-O4	121.2 (6)	N2-C21-C22	114.6 (5)
O3-C1-C2	120.4 (5)	N2-C23-C24	113.3 (5)
O4-C1-C2	118.4 (5)	N2-C25-C26	114.2 (6)
C7—C2—C3	118.6 (6)		

The structure was solved through a combination of direct methods and difference Fourier synthesis using the SHELXTL/PC package (Sheldrick, 1991). Refinement was performed with SHELXL93 (Sheldrick, 1993) using the whole data set. H atoms were included at their expected positions with fixed displacement parameters.

Data collection: P3/P4-PC Diffractometer Program (Siemens, 1991). Cell refinement: P3/P4-PC Diffractometer Program. Data reduction: SHELXTL/PC XDISK. Program(s) used to solve structure: SHELXTL/PC XS. Molecular graphics: SHELXTL/PC XP. Software used to prepare material for publication: SHELXL93 CIFTAB.

The authors would like to thank Fundación Andes for the purchase of the single-crystal diffractometer currently operating at the Universidad de Chile. JLK and DC acknowledge financial support from FONDECYT, grants 2930010 and 91/0556, respectively. JLK is grateful to Universidad of Atacama for a graduate fellowship.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry, including torsion angles and contact distances, have been deposited with the IUCr (Reference: BK1032). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Bustos, C., Manzur, C., González, H., Schreberg, R., Carrillo, D., Bois, C., Jeannin, Y. & Gouzerh, P. (1991). *Inorg. Chim. Acta*, **185**, 25–31.
- Carrillo, D., Gouzerh, P. & Jeannin, Y. (1985). Nouv. J. Chim. 9, 749-755.
- Carrillo, D., Robert, F. & Gouzerh, P. (1992). Inorg. Chim. Acta, 197, 209-215.
- Debenjak, B., Bustos, C., Carrillo, D., Robert, F. & Gouzerh, P. (1992a). Bol. Soc. Chil. Quím. 37, 105-113.
- Debenjak, B., Bustos, C., Carrillo, D., Robert, F. & Gouzerh, P. (1992b). Polyhedron, 11, 2321–2326.
- Henderson, B. A., Leigh, G. J. & Picket, C. J. (1983). Adv. Inorg. Radiochem. 27, 197–203.
- Leigh, G. J. (1992). Acc. Chem. Res. 25, 177-181.
- Li-Kao, J., Bustos, C., Carrillo, D., Robert, F. & Gouzerh, P. (1993). Transition Met. Chem. 18, 265–270.
- Palanca, P., Picher, T., Sanz, V., Gómez-Romero, P., Llopis, E., Domenech, A. & Cervilla, A. (1990). J. Chem. Soc. Chem. Commun. pp. 531-533.
- Sheldrick, G. M. (1991). SHELXTL/PC. Version 4.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Siemens (1991). P3/P4-PC Difractometer Program. Version 4.27. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1995). C51, 578-580

$[(\eta^6-C_6H_3Me_3)Ru(D-pen)]_2Cl_2.4H_2O$

GLEN CAPPER, DAVID L. DAVIES, JOHN FAWCETT AND DAVID R. RUSSELL

Chemistry Department, University of Leicester, Leicester LE1 7RH, England

(Received 16 February 1994; accepted 6 September 1994)

Abstract

The structure of the title compound, $bis[\mu$ -D-3-mercaptovalinato(1-)]-1 κN ,1:2 $\kappa^2 S$;2 κN ,1:2 $\kappa^2 S$ -bis[(η^6 -mesitylene)ruthenium] dichloride tetrahydrate, [Ru₂(C₅-

 $H_{10}NO_2S_2(\eta^6-C_9H_{12})_2]Cl_2.4H_2O$, contains tridentate anionic amino acid ligands, where the S atoms adopt bridging positions between the two Ru atoms resulting in a near planar Ru—S—Ru—S ring. The coordination at each Ru atom is completed by an amino N atom of the chelating ligand and the η^6 -bonded mesitylene ring.

Comment

The determination of the structure of the title compound (1) was undertaken as part of a study of organometallic complexes with biologically important ligands (Carter, Davies, Fawcett & Russell, 1993). In particular, we have studied arene-ruthenium half-sandwich complexes, including amino acid complexes [(arene)Ru(aa)Cl] (aa = an anionic amino acid ligand) (Carter, Davies, Duffy, Fawcett & Russell, 1994) which contain a chiral metal centre.

Compound (1) is analogous to the η^6 -benzeneruthenium(II)-l-penicillamine complex (2) reported by Sheldrick & Heeb (1989), the most significant difference being that compound (1) has four water molecules associated with each dimeric cation, where only one was found for (2). The central four-membered Ru-S-Ru-S ring, while essentially planar (Fig. 1) with deviations from the best least-squares plane of -0.15for Ru(1), -0.15 for Ru(2), 0.38 for S(1) and 0.38 Å for S(2), is less so than that found by Sheldrick & Heeb (maximum deviation 0.009 Å). The Ru-S distances in the five-membered chelate rings [2.335(3), 2.348 (3) Å] are shorter than the bridging Ru—S distances [2.394 (2), 2.401 (2) Å], as found for (2). The chelating rings have a cis arrangement which permits both chloride ions to form hydrogen bonds between the -OH group of one ligand and the -NH2 group of the other. The O···Cl (2.874, 2.917 Å) and the N···Cl (3.249, 3.253 Å) distances are comparable with the distances found for a similar arrangement in compound (2). The chloride ions have further hydrogen-bond contacts with water molecules: $Cl(1) \cdots O(7)$ (3.273 Å) and $Cl(2) \cdots O(8)$ (3.235 Å) (Fig. 2). None of the H atoms of the $--NH_2$ or --OH groups or those of the water molecules were located with any certainty and were